• EOL

Algorytmy sztucznej inteligencji. Ilustrowany przewodnik - Rishal Hurbans

Indeks: KSZ-20055 EAN: 9788328375079
Praktyczny przewodnik po algorytmach sztucznej inteligencji. Książka autorstwa Rishala Hurbansa przeznaczona jest dla programistów i inżynierów, którzy chcą zrozumieć zagadnienia i algorytmy związane ze sztuczną inteligencją na podstawie praktycznych przykładów i wizualnych wyjaśnień.
Algorytmy sztucznej inteligencji. Ilustrowany przewodnik - Rishal Hurbans
52,90 zł
50,38 zł netto
Zapłać później
Powiadom o dostępności
Niedostępny
Produkt wycofany
Producent: Helion

Uwaga!

Sprzedaż produktu została zakończona. Sprawdź inne w tej kategorii.

Opis produktu: Algorytmy sztucznej inteligencji. Ilustrowany przewodnik - Rishal Hurbans

Książka autorstwa Rishala Hurbansa przeznaczona jest dla programistów i inżynierów, którzy chcą zrozumieć zagadnienia i algorytmy związane ze sztuczną inteligencją na podstawie praktycznych przykładów i wizualnych wyjaśnień. To praktyczny przewodnik po algorytmach sztucznej inteligencji.

W książce zwiera informacje o:

  • kategoriach i znaczeniu algorytmów sztucznej inteligencji
  • inteligentnych przeszukiwaniach w procesie podejmowania decyzji
  • algorytmach genetycznych i inteligencji rozproszonej
  • uczeniu maszynowym i sieciach neuronowych
  • uczeniu przez wzmacnianie
Algorytmy sztucznej inteligencji. Ilustrowany przewodnik - Rishal Hurbans

Algorytmy sztucznej inteligencji. Ilustrowany przewodnik - Rishal Hurbans. Książka przeznaczona jest dla programistów.

Algorytmy sztucznej inteligencji. Ilustrowany przewodnik - Rishal Hurbans

Książka przedstawia na podstawie praktycznych przykładów algorytmy sztucznej inteligencji.

Informacje o książce

  • Autor: Rishal Hurbans
  • Tytuł oryginalny: Grokking Artificial Intelligence Algorithms
  • Tłumaczenie: Tomasz Walczak
  • Wydawca: Helion SA
  • Rok wydania: 2021
  • Liczba stron: 336
  • ISBN: 978-83-283-7507-9
  • Format: 200 x 225 mm

O Autorze

Rishal Hurbans był kierownikiem zespołów i projektów, założył start-up, zajmował się też planowaniem strategicznym dla międzynarodowych firm. Wystąpił na dziesiątkach konferencji na całym świecie. Jest znawcą mechanizmów i strategii biznesowych oraz podejścia design thinking. Pasjonuje się sztuczną inteligencją, kulturą pragmatyzmu oraz filozofią.

Spis treści

Przedmowa (IX)

Podziękowania (XVII)

O książce (XIX)

O autorze (XXIII)

1. Intuicyjne omówienie sztucznej inteligencji (1)

  • Czym jest sztuczna inteligencja? (1)
  • Krótka historia sztucznej inteligencji (6)
  • Rodzaje problemów i modele ich rozwiązywania (8)
  • Intuicyjne omówienie zagadnień z obszaru sztucznej inteligencji (10)
  • Zastosowania algorytmów sztucznej inteligencji (14)

2. Podstawy przeszukiwania (21)

  • Czym jest planowanie i przeszukiwanie? (21)
  • Koszt obliczeń - powód stosowania inteligentnych algorytmów (24)
  • Jakie problemy można rozwiązywać za pomocą algorytmów przeszukiwania? (25)
  • Reprezentowanie stanu - tworzenie platformy do reprezentowania przestrzeni problemowej i rozwiązań (28)
  • Przeszukiwanie siłowe - szukanie rozwiązań po omacku (33)
  • Przeszukiwanie wszerz - najpierw wszerz, potem w głąb (35)
  • Przeszukiwanie w głąb - najpierw w głąb, potem wszerz (44)
  • Zastosowania siłowych algorytmów przeszukiwania (51)
  • Opcjonalne informacje - rodzaje grafów (51)
  • Opcjonalne informacje - inne sposoby reprezentowania grafów (54)

3. Inteligentne przeszukiwanie (57)

  • Definiowanie heurystyk - projektowanie hipotez opartych na wiedzy (57)
  • Przeszukiwanie sterowane - szukanie rozwiązań z wykorzystaniem wskazówek (60)
  • Przeszukiwanie antagonistyczne - szukanie rozwiązań w zmiennym środowisku (70)

4. Algorytmy ewolucyjne (87)

  • Czym jest ewolucja? (87)
  • Problemy, jakie można rozwiązywać za pomocą algorytmów ewolucyjnych (90)
  • Algorytm genetyczny - cykl życia (94)
  • Kodowanie przestrzeni rozwiązań (97)
  • Tworzenie populacji rozwiązań (102)
  • Pomiar przystosowania osobników w populacji (104)
  • Wybór rodziców na podstawie przystosowania (107)
  • Generowanie osobników na podstawie rodziców (111)
  • Tworzenie populacji następnego pokolenia (116)
  • Konfigurowanie parametrów algorytmu genetycznego (120)
  • Zastosowania algorytmów ewolucyjnych (121)

5. Zaawansowane techniki ewolucyjne (125)

  • Cykl życia algorytmu ewolucyjnego (125)
  • Różne strategie selekcji (127)
  • Kodowanie z użyciem liczb rzeczywistych (130)
  • Kodowanie porządkowe - korzystanie z sekwencji (134)
  • Kodowanie za pomocą drzewa - praca z hierarchiami (137)
  • Często spotykane rodzaje algorytmów ewolucyjnych (141)
  • Słowniczek pojęć związanych z algorytmami ewolucyjnymi (142)
  • Inne zastosowania algorytmów ewolucyjnych (143)

6. Inteligencja rozproszona: mrówki (145)

  • Czym jest inteligencja rozproszona? (145)
  • Problemy dostosowane do algorytmu mrówkowego (148)
  • Reprezentowanie stanu - jak zapisać ścieżki i mrówki? (152)
  • Cykl życia algorytmu mrówkowego (156)
  • Zastosowania algorytmu mrówkowego (177)

7. Inteligencja rozproszona: cząstki (179)

  • Na czym polega optymalizacja rojem cząstek? (179)
  • Problemy optymalizacyjne - bardziej techniczne spojrzenie (181)
  • Problemy, jakie można rozwiązać za pomocą optymalizacji rojem cząstek (185)
  • Reprezentowanie problemu - jak wyglądają cząstki? (188)
  • Przebieg działania algorytmu optymalizacji rojem cząstek (189)
  • Zastosowania algorytmów optymalizacji rojem cząstek (209)

8. Uczenie maszynowe (213)

  • Czym jest uczenie maszynowe? (213)
  • Problemy, jakie można rozwiązywać za pomocą uczenia maszynowego (215)
  • Przebieg uczenia maszynowego (217)
  • Klasyfikowanie z użyciem drzew decyzyjnych (241)
  • Inne popularne algorytmy uczenia maszynowego (258)
  • Zastosowania algorytmów uczenia maszynowego (260)

9. Sztuczne sieci neuronowe (263)

  • Czym są sztuczne sieci neuronowe? (263)
  • Perceptron: reprezentacja neuronu (266)
  • Definiowanie sieci ANN (271)
  • Propagacja w przód - używanie wyuczonej sieci ANN (278)
  • Propagacja wsteczna - uczenie sieci ANN (286)
  • Możliwe funkcje aktywacji (298)
  • Projektowanie sztucznych sieci neuronowych (299)
  • Typy i zastosowania sieci ANN (303)

10. Uczenie przez wzmacnianie z użyciem algorytmu Q-learning (307)

  • Czym jest uczenie przez wzmacnianie? (307)
  • Problemy rozwiązywane za pomocą uczenia przez wzmacnianie (311)
  • Przebieg uczenia przez wzmacnianie (313)
  • Deep learning w uczeniu przez wzmacnianie (331)
  • Zastosowania uczenia przez wzmacnianie (332)

Książka - Autor Rishal Hurbans
Książka - ISBN 978-83-283-7507-9
Książka - Oprawa miękka
Książka - Wydawnictwo Helion S.A.
Tematyka Sztuczna inteligencja
Szerokość opakowania 20 cm
Wysokość opakowania 22.5 cm
Głębokość opakowania 2 cm
Masa opakowania 0.7 kg

Jako pierwszy zadaj pytanie dotyczące tego produktu!

Klienci którzy zakupili ten produkt kupili również:

Produkty z tej samej kategorii: